Integrating Facial Recognition and GPS Technology for Efficient Attendance Management in Educational Institutions

Authors

  • M Rhifky Wayahdi Universitas Battuta, Medan
  • Fatahul Ahmad Dzikri Universitas Battuta, Medan

Keywords:

Face recognition, GPS technology, Attendance, Management, Educational

Abstract

This study explores the integration of facial recognition and GPS technology to enhance attendance management systems in educational institutions. By employing a two-layer verification process that combines face validation and location validation, the proposed system addresses common challenges of traditional attendance methods, such as proxy attendance and inefficient data management. The system not only improves accuracy and security but also provides valuable insights into attendance patterns through location-based analytics. Despite its advantages, the research highlights the need to address challenges related to data privacy, security, and user acceptance for successful implementation. Overall, this study contributes to the development of modern attendance management solutions, demonstrating the potential for increased efficiency and effectiveness in educational environments.

References

Ariansyah, W., Ilham, D. N., Khairuman, K., & Candra, R. A. (2021). Opening doors using Internet of Things (IoT) based face recognition. Brilliance: Research of Artificial Intelligence, 1(2). https://doi.org/10.47709/brilliance.v1i2.1095

Babatunde, A. N., Oke, A. A., Babatunde, R. S., Ibitoye, O., & Jimoh, E. R. (2022). Mobile based student attendance system using geo-fencing with timing and face recognition. Advances in Multidisciplinary and Scientific Research Journal Publication, 10(1), 75–90. https://doi.org/10.22624/AIMS/MATHS/V10N1P8

Chavan, A., Wable, S., More, S., Sanap, Y., & Manwatkar, A. (2023). Smart system for attendance based on face recognition. International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets40296

Chen, X. (2023). Study on student attendance system based on face recognition. Journal of Physics: Conference Series, 2492(1). https://doi.org/10.1088/1742-6596/2492/1/012015

Dagade, O., Janjire, T., Jagdale, S., & Jawanjal, S. (2023). Face recognition attendance monitoring system. International Journal for Research in Applied Science and Engineering Technology, 11(10), 1598–1601. https://doi.org/10.22214/ijraset.2023.56266

Gorham, G., Howard, K., Cunningham, J., Lawton, P. D., Ahmed, A. M. S., Barzi, F., & Cass, A. (2022). Dialysis attendance patterns and health care utilisation of Aboriginal patients attending dialysis services in urban, rural and remote locations. BMC Health Services Research, 22(1). https://doi.org/10.1186/s12913-022-07628-9

Hidayat, M. M., Ramdana, B. K. A., Julianti, A., & Muzzani, A. A. (2023). Development of employee online attendance system using webcams and web-based location (Case study of CV. OTW Computer Gusaha).

Hosen, M. A., Moz, S. H., Khalid, M. M. H., Kabir, S. S., & Galib, S. M. (2023). Face recognition-based attendance system with anti-spoofing, system alert, and email automation. Radioelectronic and Computer Systems, 2023(2(106)), 119–128. https://doi.org/10.32620/REKS.2023.2.10

Lee, D. (2020). Bluetooth-based smart attendance system. International Journal of Engineering and Advanced Technology, 9(3), 3851–3854. https://doi.org/10.35940/ijeat.C6280.029320

Modak, S., Shah, H., Surana, R., & Mishra, D. (2022). A systematic review of attendance systems based on face recognition. https://doi.org/10.36106/paripex

Najaf, A. R. E., Alexander, J. D., Tarmidzi, K., & Kurnia, F. (2023). Designing a web-based elementary school attendance system using the Laravel framework. RIGGS: Journal of Artificial Intelligence and Digital Business, 1(2), 64–68. https://doi.org/10.31004/riggs.v1i2.116

Nguyen, V. D., Khoa, H. V., Kieu, T. N., & Huh, E. N. (2022). Internet of Things-based intelligent attendance system: Framework, practice implementation, and application. Electronics (Switzerland, 11(19). https://doi.org/10.3390/electronics11193151

Nordin, N., & Fauzi, N. H. M. (2020). A web-based mobile attendance system with facial recognition feature. International Journal of Interactive Mobile Technologies, 14(5), 193–202. https://doi.org/10.3991/IJIM.V14I05.13311

Ojo, O. S., Oyediran, M. O., Bamgbade, B. J., Adeniyi, A. E., Ebong, G. N., & Ajagbe, S. A. (2023). Development of an improved convolutional neural network for an automated face-based university attendance system. ParadigmPlus, 4(1), 18–28. https://doi.org/10.55969/paradigmplus.v4n1a2

Pranoto, H., & Kusumawardani, O. (2021). Real-time triplet loss embedding face recognition for authentication student attendance records system framework. Joiv International Journal on Informatics Visualization, 5(2), 150–155. https://doi.org/10.30630/joiv.5.2.480

Suhaimin, M. S. M., Hijazi, M. H. A., Kheau, C. S., & On, C. K. (2021). Real-time mask detection and face recognition using eigenfaces and local binary pattern histogram for attendance system. Bulletin of Electrical Engineering and Informatics, 10(2), 1105–1113. https://doi.org/10.11591/EEI.V10I2.2859

Sumithra, M., Chezhian, P. V., Kumar, K. R., & Kumar, S. N. (2022). Automated attendance system using real-time face recognition and MySQL database. Journal of Cognitive Human-Computer Interaction, 15–18. https://doi.org/10.54216/JCHCI.020102

Thirukrishna, J. T., Revathi, A. M., Shashank, Y., Pandith, T., & Samarth, N. (2023). Smart attendance system using face recognition. Asian Journal of Engineering and Applied Technology, 12(2), 34–39. https://doi.org/10.51983/ajeat-2023.12.2.3968

Wayahdi, M. R., & Ruziq, F. (2024). Designing a used goods donation system to reduce waste accumulation using the WASPAS method. Sinkron, 8(4), 2325–2334. https://doi.org/10.33395/sinkron.v8i4.14115

Wayahdi, M. R., Ginting, S. H. N., & Syahputra, D. (2021). Greedy, A-Star, and Dijkstra’s algorithms in finding shortest path. International Journal of Advances in Data and Information Systems, 2(1), 45–52. https://doi.org/10.25008/ijadis.v2i1.1206

Wayahdi, M. R., Ruziq, F., & Ginting, S. H. N. (2024). AI approach to predict student performance (Case study: Battuta University). Journal of Science and Social Research.

Downloads

Published

2025-01-03