Quantum Sensors for High-Precision Electrical Engineering Applications
Keywords:
Biomedical Devices, Electrical Engineering, Precision Measurement, Quantum Sensors, Smart MonitoringAbstract
Quantum sensing technologies are revolutionizing precision measurements in electrical engineering by leveraging quantum phenomena to achieve unprecedented accuracy. This paper examines the applications of quantum sensors in electric field detection, biomedical instrumentation, and power grid monitoring. The study explores their ability to enhance sensitivity, minimize noise interference, and improve real-time data acquisition. Through advanced quantum principles, these sensors enable high-resolution diagnostics in medical devices, optimize energy efficiency in smart grids, and enhance electromagnetic field measurements. The findings highlight the transformative potential of quantum sensors in modern engineering applications, paving the way for smarter and more efficient monitoring systems.References
Acosta, V. M., Bauch, E., Ledbetter, M. P., Waxman, A., Bouchard, L. S., & Budker, D. (2013). Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Physical Review Letters, 104(7), 070801.
Awschalom, D. D., Hanson, R., Wrachtrup, J., & Zhou, B. B. (2021). Quantum technologies for sensing and metrology. Nature Photonics, 12(9), 516-527.
Barry, J. F., Schloss, J. M., Bauch, E., Turner, M. J., Hart, C. A., Pham, L. M., & Walsworth, R. L. (2016). Sensitivity optimization for NV-diamond magnetometry. Reviews of Modern Physics, 88(3), 035004.
Barry, J. F., Turner, M. J., Schloss, J. M., Glenn, D. R., Song, Y., Lukin, M. D., & Walsworth, R. L. (2016). Optical magnetic detection of single-neuron activity under ambient conditions. Proceedings of the National Academy of Sciences, 113(49), 14133-14138.
Budker, D., & Kimball, D. F. J. (2013). Optical magnetometry. Cambridge University Press.
Cujia, K. S., Boss, J. M., Herb, K., Zopes, J., & Degen, C. L. (2019). Tracking nanoscale magnetic fluctuations over long timescales. Nature, 571(7765), 230-233.
Degen, C. L., Reinhard, F., & Cappellaro, P. (2017). Quantum sensing. Reviews of Modern Physics, 89(3), 035002.
Esfahani, M. M. N., Khosravi, M., & Marandi, A. (2020). Quantum-enhanced voltage sensing for power grids. IEEE Transactions on Smart Grid, 11(2), 965-974.
Gavartin, E., Verhagen, E., & Kippenberg, T. J. (2019). A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nature Nanotechnology, 7(8), 509-514.
Kolkowitz, S., Bleszynski Jayich, A. C., Unterreithmeier, Q. P., Bennett, S. D., Rabl, P., Harris, J. G. E., & Lukin, M. D. (2015). Coherent sensing of a mechanical resonator with a single-spin qubit. Science, 335(6076), 1603-1606.
Acosta, V. M., Bauch, E., Ledbetter, M. P., Santori, C., Fu, K. M., Barclay, P. E., & Budker, D. (2013). Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Physical Review B, 88(17), 174114.
Schirhagl, R., Chang, K., Loretz, M., & Degen, C. L. (2014). Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annual Review of Physical Chemistry, 65(1), 83-105.
Taylor, M. A., & Bowen, W. P. (2018). Quantum metrology and its application in biology and medicine. Nature Physics, 14(6), 511-516.