Dampak Kecerdasan Buatan Pada Evolusi Mesin Pencari Google
Keywords:
Artificial intelligence (AI), Google, search engine development, AI technologyAbstract
The development of artificial intelligence (AI) has had a significant impact on the development of search engines like Google. This article details how AI is changing the way search engines work, from improving the accuracy of search results to providing more relevant recommendations to users. The in-depth analysis also shows how AI technology is driving innovation in indexing and clustering web content, allowing search engines to find the information users need more efficiently. However, the article also highlights the challenges that search engines face
References
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
Agbaji, D., Lund, B., & Mannuru, N. R. (2023). Perceptions of the Fourth Industrial Revolution and Artificial Intelligence Impact on Society (arXiv:2308.02030). arXiv. http://arxiv.org/abs/2308.02030
Aggarwal, P., Murahari, V., Rajpurohit, T., Kalyan, A., Narasimhan, K. R., & Deshpande, A. (2023). GEO: Generative Engine Optimization (arXiv:2311.09735). arXiv. http://arxiv.org/abs/2311.09735
Al-Khassawneh, Y. A. (2022). A Review of Artificial Intelligence in Security and Privacy: Research Advances, Applications, Opportunities, and Challenges. Indonesian Journal of Science and Technology, 8(1), 79–96. https://doi.org/10.17509/ijost.v8i1.52709
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. http://arxiv.org/abs/1810.04805
Gligorijevic, J., Gligorijevic, D., Stojkovic, I., Bai, X., Goyal, A., & Obradovic, Z. (2018). Deeply Supervised Semantic Model for Click-Through Rate Prediction in Sponsored Search (arXiv:1803.10739). arXiv. http://arxiv.org/abs/1803.10739
Hajian Hoseinabadi, A., & CheshmehSohrabi, M. (2024). Proposing a New Combined Indicator for Measuring Search Engine Performance and Evaluating Google, Yahoo, DuckDuckGo, and Bing Search Engines based on Combined Indicator. Journal of Librarianship and Information Science, 56(1), 178–197. https://doi.org/10.1177/09610006221138579
Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y., Zhang, A., Zhang, L., Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, Z., Lu, Z., Qiu, X., Song, R., … Zhu, J. (2021). Pre-Trained Models: Past, Present and Future (Version 3). arXiv. https://doi.org/10.48550/ARXIV.2106.07139
Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2023). A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks (arXiv:2306.07303). arXiv. http://arxiv.org/abs/2306.07303
Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen, T. H., Sainz, O., Agirre, E., Heintz, I., & Roth, D. (2024). Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey. ACM Computing Surveys, 56(2), 1–40. https://doi.org/10.1145/3605943
Mitra, B., & Craswell, N. (2018). An Introduction to Neural Information Retrieval t. Foundations and Trends® in Information Retrieval, 13(1), 1–126. https://doi.org/10.1561/1500000061
Nandi, B., Jana, S., & Das, K. P. (2023). Machine learning-based approaches for financial market prediction: A comprehensive review. Journal of AppliedMath, 1(2), 134. https://doi.org/10.59400/jam.v1i2.134
Oliveira, B., & Teixeira Lopes, C. (2023). From 10 Blue Links Pages to Feature-Full Search Engine Results Pages—Analysis of the Temporal Evolution of SERP Features. Proceedings of the 2023 Conference on Human Information Interaction and Retrieval, 338–345. https://doi.org/10.1145/3576840.3578307
Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (Fourth edition). Pearson.
Wan, B., Dong, S., Chu, D., Li, H., Liu, Y., Fu, J., Fang, F., Li, S., & Zhou, D. (2023). A deep neural network model for coreference resolution in geological domain. Information Processing & Management, 60(3), 103268. https://doi.org/10.1016/j.ipm.2023.103268
Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., & Wei, F. (2024). Improving Text Embeddings with Large Language Models (arXiv:2401.00368). arXiv. http://arxiv.org/abs/2401.00368
Wang, S., Dou, Z., Liu, J., Zhu, Q., & Wen, J.-R. (2024). Personalized and Diversified: Ranking Search Results in an Integrated Way. ACM Transactions on Information Systems, 42(3), 1–25. https://doi.org/10.1145/3631989
Xue, J., Niu, Y., Liang, X., & Yin, S. (2023). Unraveling the Effects of Voice Assistant Interactions on Digital Engagement: The Moderating Role of Adult Playfulness. International Journal of Human–Computer Interaction, 1–22. https://doi.org/10.1080/10447318.2023.2227834
Yang, L., Chen, H., Li, Z., Ding, X., & Wu, X. (2024). Give Us the Facts: Enhancing Large Language Models with Knowledge Graphs for Fact-aware Language Modeling (arXiv:2306.11489). arXiv. http://arxiv.org/abs/2306.11489
Zhang, H., Xu, H., Tian, X., Jiang, J., & Ma, J. (2021). Image fusion meets deep learning: A survey and perspective. Information Fusion, 76, 323–336. https://doi.org/10.1016/j.inffus.2021.06.008